skip to main content


Search for: All records

Creators/Authors contains: "Torres, Jorge"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Objective:Magnetic fluid hyperthermia (MFH) is a still experimental technique found to have a potential application in the treatment of cancer. The method aims to reach around 41 °C–47 °C in the tumor site by exciting magnetic nanoparticles with an externally applied alternating magnetic field (AMF), where cell death is expected to occur. Applying AMFs with high spatial resolution is still a challenge. The AMFs from current and prospective MFH applicators cover relatively large areas; being not suitable for patients having metallic implants near the treatment area. Thus, there will be a clinical need for smaller magnetic field applicators. To this end, a laparoscopic induction heater (LIH) and a transrectal induction heater (TRIH) were developed.Methods:Miniature ‘pancake’ coils were wound and inserted into 3D printed enclosures. Ovarian (SKOV-3, A2780) and prostate (PC-3, LNCaP) cancer cell lines were used to evaluate the instruments’ capabilities in killing cancer cellsin vitro, using Synomag®-D nanoparticles as the heat mediators. NIH3T3 normal cell lines were also used with both devices to observe if these cells tolerated the conditions applied.Results:Magnetic field intensities reached by the LIH and TRIH were 42.6 kA m−1at 326 kHz and 26.3 kA m−1at 303 kHz, respectively. Temperatures reached in the samples were 41 °C by the LIH and 43 °C by the TRIH. Both instruments successfully accomplished killing cancer cells, with minimal effects on normal cells.Conclusion:This work presents the first line of handheld medical induction heaters and have the potential to be a complement to existing cancer therapies.Significance:These instruments could enable the development of MFH modalities that will facilitate the clinical translation of this thermal treatment.

     
    more » « less
  2. Kellogg, Doug (Ed.)
    The elucidation of a protein’s interaction/association network is important for defining its biological function. Mass spectrometry–based proteomic approaches have emerged as powerful tools for identifying protein–protein interactions (PPIs) and protein–protein associations (PPAs). However, interactome/association experiments are difficult to interpret, considering the complexity and abundance of data that are generated. Although tools have been developed to identify protein interactions/associations quantitatively, there is still a pressing need for easy-to-use tools that allow users to contextualize their results. To address this, we developed CANVS, a computational pipeline that cleans, analyzes, and visualizes mass spectrometry–based interactome/association data. CANVS is wrapped as an interactive Shiny dashboard with simple requirements, allowing users to interface easily with the pipeline, analyze complex experimental data, and create PPI/A networks. The application integrates systems biology databases such as BioGRID and CORUM to contextualize the results. Furthermore, CANVS features a Gene Ontology tool that allows users to identify relevant GO terms in their results and create visual networks with proteins associated with relevant GO terms. Overall, CANVS is an easy-to-use application that benefits all researchers, especially those who lack an established bioinformatic pipeline and are interested in studying interactome/association data. 
    more » « less
  3. null (Ed.)
  4. I am deeply humbled and honored to receive the American Society for Cell Biology (ASCB) Prize for Excellence in Inclusivity. Thank you to the ASCB for recognizing the contributions of faculty to inclusion and diversity in STEM and the importance of this for the advancement of science. Thank you to the Howard Hughes Medical Institute (HHMI) for your generous support of inclusivity. The prize money will be used to fund outreach activities aimed at increasing inclusion in science and to create research opportunities for students from underrepresented groups in the sciences. In this essay, I share bits of my life’s story that I hope will resonate with a broad audience, especially students from underrepresented groups in STEM, and that drive my passion for inclusion and diversity. I provide points of consideration for students to enhance their preparation for science careers and for faculty to improve the current landscape of inclusion and diversity in STEM. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. Abstract

    The assembly of the bipolar mitotic spindle requires the careful orchestration of a myriad of enzyme activities like protein posttranslational modifications. Among these, phosphorylation has arisen as the principle mode for spatially and temporally activating the proteins involved in early mitotic spindle assembly processes. Here, we review key kinases, phosphatases, and phosphorylation events that regulate critical aspects of these processes. We highlight key phosphorylation substrates that are important for ensuring the fidelity of centriole duplication, centrosome maturation, and the establishment of the bipolar spindle. We also highlight techniques used to understand kinase–substrate relationships and to study phosphorylation events. We conclude with perspectives on the field of posttranslational modifications in early mitotic spindle assembly.

     
    more » « less